Промежуточная аттестация по курсу химии 11 класса

1. Содержание промежуточной аттестационной работы

Промежуточная аттестационная контрольная работа по химии в 11 классе составлена в соответствии с требованиями Федерального компонента Государственного образования и соответствует учебным возможностям учащихся данной ступени обучения.

Цель: установление соответствия уровня учащихся требованиям Государственного образовательного стандарта основного общего образования.

2. Структура промежуточной аттестационной работы и характеристика заданий. Форма промежуточной аттестационной работы – контрольная работа

В работе используется 2 типа заданий – задания с выбором ответа (8 заданий), к каждому из них предлагается 4 варианта ответа, из которых только один правильный. Часть В и С представляют собой задания со свободным ответом.

Работа содержит 2 части заданий.

Первая часть – базовые задания, позволяющие проверить освоение базовых знаний и умений по предмету.

Вторая часть — задания повышенного уровня, проверяющие способность учащихся решать учебные задачи по учебному предмету, в которых способ выполнения не очевиден.

Проверяемые элементы содержания.

Часть 1 содержит 8 заданий с кратким ответом (базовый уровень сложности).

- А1 Строение атомов химических элементов Периодической системы Д. И. Менделеева
- А2 Типы химической связи
- А3 Типы кристаллических решеток
- А4 Классификация неорганических соединений
- А5 Скорость химических реакций
- А6 Способы смещения химического равновесия
- А7 Расчет массовой доли растворенного вещества в растворе
- А8 Расчет по термохимическому уравнению

Часть 2 содержит 4 задания с кратким ответом (повышенный уровень сложности)

- В1 Классификация органических соединений
- В2 Химические свойства простых и сложных неорганических веществ
- В3 Гидролиз солей
- В4 Электролиз растворов солей

Часть 3 содержит два задания с развернутым ответом (высокий уровень сложности).

- C1-В заимосвязь различных классов неорганических веществ, осуществление предложенных превращений
- С2 Окислительно- восстановительные реакции, их уравнивание методом электронного баланса

Оценивание работы.

За правильный ответ в части А – 1 балл

За полный правильный ответ в части B-2 балла; если допущена одна ошибка -1 балл; за неверный ответ (более одной ошибки) или его отсутствие -0 баллов.

За полный правильный ответ в части С:

С1 – 5 баллов

C2 – 3 балла

Итого максимально 24 балла.

Критерии оценивания С1:

по 1 баллу за каждое уравнение реакции (всего 5 баллов)

Критерии оценивания С2:

Определены степени окисления и составлен баланс – 1 балл;

Выставлены коэффициенты в исходное уравнение – 1 балл;

Определены окислитель и восстановитель – 1 балл (всего 3 балла)

Шкала пересчета первичных баллов в отметку

Обший балл	0 - 7	8 - 14	15 - 19	
Отметка	2	3	4	

^{*}Для получения отметки «4» необходимо получить не менее 3 баллов в части С. *Для получения отметки «5» необходимо получить не менее 5 баллов в части С.

Демонстрационный вариант						
Промежуточная аттестационная ра Вариа		11 класс				
Часть 1 (выберите один верный ответ из че	етырех предложенных)	I				
А1 В атоме химического элемента, расположенного в 3 периоде, VI группе, главной						
подгруппе, заряд ядра равен 1) +3, 2) +6, 3) +16, 4) -16.					
А2 Ионная связь характерна для 1) S ₈ , 2) S	SO_3 , $3)K_2S$, $4)H_2S$.					
АЗ У веществ с низкой температурой плавлен:	ия кристаллическая реше	тка				
1) атомная 2) ионная 3) молекулярная 4)	металлическая					
A4 Вещества, формулы которых CaO и CaCl ₂ я	вляются соответственно					
1) основным оксидом и основанием, 2) амф	отерным оксидом и кисл	отой,				
3) основным оксидом и солью, 4) кис.	лотой и основанием					
A5 Скорость реакции цинка с соляной кислотой не зависит от						
1) концентрации кислоты 2) степени измельчения цинка						
3) давления 4) температуры						
46 Химическое равновесие в системе $2CO_{(ra3)} + O_{2(ra3)} \leftrightarrow 2CO_{2(ra3)} + Q$ смещается						
вправо в результате						
1) увеличения концентрации О2 2) повышения температуры						
3) понижения давления 4) примене	-					
А7 Масса уксусной кислоты, содержащаяся в плотность 1,1 г/мл), равна 1)480 г 2)440 г		зой долей 80%				
48 В соответствии с термохимическим уравно	ением $2Mg + SiO_2 = 2MgO$	O + Si + 372кДж,				
при получении 200 г оксида магния количество выделившейся теплоты будет равно						
1) 1860 кДж — 2) 465 кДж — 3) 620 кДж — 4) 99	30 кДж					
Часть 2 (при выполнении заданий к каждому элементу первого столбца подберите						
соответствующий элемент из второго столбца. Запишите выбранные цифры.						
Цифры в ответе могут повторяться.)						
В1 Установить соответствие между молекулярной формулой вещества и классом						
ррганических соединений, к которому оно относится						
Название вещества	Класс					
А) метаналь	1) арены					
Б) глицерин	2) альдегиды					
D)	2)					

Название вещества	Класс
А) метаналь	1) арены
Б) глицерин	2) альдегиды
В) глицин	3) спирты
Г) пропин	4) алкены
· ·	5) аминокислоты
	6) алкины
В2 Установите соответствие между исход	цными веществами и продук
V DE LEUDINGHHIE DEHIE CED	

ктами их взаимодействия РЕАГИРУЮЩИЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ

B) NaOH+ SO₃ 3) NaOH Γ) NaOH + FeCl₂ 4) Fe(OH)₃+ NaCl 5) $Na_2SO_3 + H_2O$ 6) $Na_2SO_4 + H_2O$ ВЗ Установите соответствие между названием соли и её отношением к гидролизу НАЗВАНИЕ СОЛИ ОТНОШЕНИЕ К ГИДРОЛИЗУ А) сульфид калия 1) гидролизуется по катиону Б) сульфит натрия 2) гидролизуется по аниону В) сульфат цезия 3) гидролизуется по катиону и аниону Г) сульфат алюминия 4) не гидролизуется В4 Установите соответствие между формулой соли и продуктом, образующимся на инертном аноде при электролизе её водного раствора ПРОДУКТ НА АНОДЕ ФОРМУЛА СОЛИ A) Na₂S 1) cepa Б) BaCl₂ 2) сернистый газ B) $Pb(NO_3)_2$ 3) хлор 4) кислород Γ) CuSO₄ азот Часть 3 (дайте развернутый ответ) C1 Осуществите превращения. $Cl_2 \rightarrow HCl \rightarrow KCl \rightarrow Cl_2 \rightarrow HClO \rightarrow NaClO$

Демонстрационный вариант

Промежуточная аттестационная работа по химии 11 класс Вариант 2

Часть 1 (выберите один верный ответ из четырех предложенных)

C2 Уравняйте методом электронного баланса: $Cl_2 + H_2O + C \rightarrow HCl + CO_2$.

А1 В атоме химического элемента, расположенного во 2 периоде, V группе, главной подгруппе, число электронов на последнем уровне равно 1) 3, 2) 5, 3) 7, 4)14.

A2 Ковалентную **полярную** связь имеет 1) O_2 , 2) SO_3 , 3)Cu, 4) K_2S .

АЗ Металлическая кристаллическая решетка у

1) оксида цинка 2) воды 3) кислорода 4) магния

А4 Вещества, формулы которых CO_2 и $Fe(OH)_3$, являются соответственно

- 1) основным оксидом и основанием, 2) амфотерным оксидом и основанием,
- 3) амфотерным оксидом и солью, 4) кислотным оксидом и амфотерным гидроксидом

А5 Увеличению скорости реакции $Fe_{(TB.)} + S_{(TB.)} = FeS_{(TB.)}$ способствует

1) повышение давления

2) понижение температуры

3) понижение давления

4) измельчение и перемешивание Fe и S

А6 В какой системе повышение давления смещает равновесие влево?

- 1) $N_{2(ra3)} + 3H_{2(ra3)} \leftrightarrow 2 NH_{3(ra3)} + Q$
- 2) $CO_{2(ra3)} + H_{2(ra3)} \leftrightarrow CO_{(ra3)} + H_2O_{(ra3)} Q$
- 3) $N_2O_{4(\Gamma a3)} \leftrightarrow 2 NO_{2(\Gamma a3)} Q$
- 4) $4HCl_{(\Gamma a3)} + O_{2(\Gamma a3)} \leftrightarrow 2Cl_{2(\Gamma a3)} + H_2O_{(\Gamma a3)} + Q$

А7 При растворении в 270 г воды сульфата калия был получен раствор с массовой долей соли 10%. Масса растворенного K_2SO_4 равна 1) 30 г 2) 60 г 3) 45г 4) 50г

А8 В реакции, термохимическое уравнение которой $2AgNO_3 = 2Ag + 2NO_2 + O_2 - 317$ кДж, количество теплоты, необходимое для получения 10.8г серебра, равно

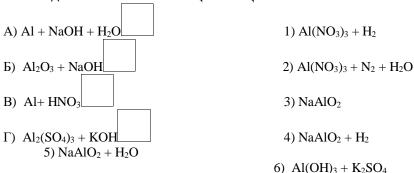
1) 31,7 кДж 2) 158,5 кДж 3) 5,3 кДж 4) 15,85 кДж

Часть 2 (при выполнении заданий к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Запишите выбранные цифры. Цифры

в ответе могут повторяться.)

В1 Установить соответствие между названием соединения и общей формулой гомологического ряда, к которому оно принадлежит

 Название соединения
 Общая формула


 А) пропин
 1) CnH2n+2

 Б) циклогептан
 2) CnH2n

 В) пентан
 3) CnH2n-2

В) пентан
 β) СnH2n-2
 γ) октадиен
 4) СnH2n-4
 5) СnH2n-6

В2 Установите соответствие между исходными веществами и продуктами их взаимодействия РЕАГИРУЮЩИЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ

ВЗ Установите соответствие между названием соли и её отношением к гидролизу

НАЗВАНИЕ СОЛИ

ОТНОШЕНИЕ К ГИДРОЛИЗУ

- А) карбонат натрияБ) хлорид аммония
- 1) гидролизуется по катиону 2) гидролизуется по аниону
- В) сульфат калия

 3) гидролизуется по катиону и аниону

 4) уз тульфат калия
- Г) сульфид алюминия 4) не гидролизуется

В4 Установите соответствие между формулой соли и продуктом, образующимся на инертном катоде при электролизе её водного раствора

ФОРМУЛА СОЛИ ПРОДУКТ НА КАТОДЕ A) NiSO₄ 1) Ni и H₂

A) N1SO₄ 1) N1 II B) NaClO₄ 2) H₂ B) LiCl 3) Na Γ) AgNO₃ 4) Li 5) Ag

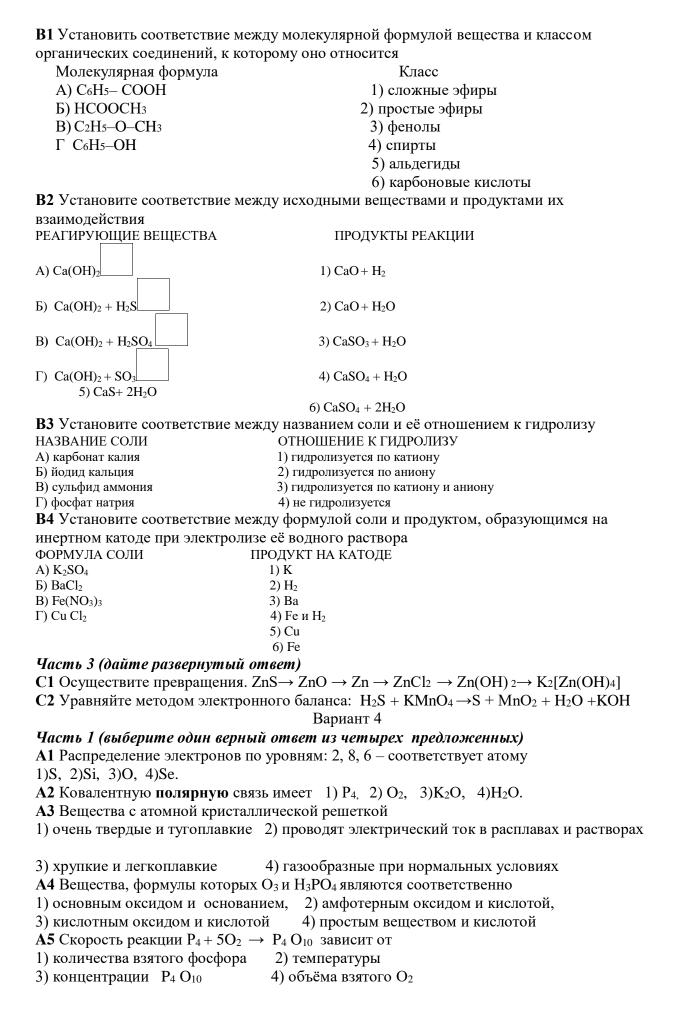
Часть 3 (дайте развернутый ответ)

- C1 Осуществите превращения. $K_2S \rightarrow K \rightarrow KI \rightarrow KCl \rightarrow KNO_3 \rightarrow KNO_2$
- **C2** Уравняйте методом электронного баланса: $S + KClO_3 \rightarrow KCl + SO_2$.

Вариант 3

Часть 1 (выберите один верный ответ из четырех предложенных)

А1 В атоме химического элемента, ядро которого содержит 12 протонов, число электронов на последнем (внешнем) уровне равно 1) 4, 2) 6, 3) 8, 4) 2.


- **А2** Химическая связь в PCl₃
- 1) ковалентная полярная, 2) металлическая, 3) ковалентная неполярная, 4) ионная **АЗ** Ионную кристаллическую решетку имеет
- 1) хлор 2) хлорид натрия 3) хлорид фосфора (III) 4) натрий
- **А4** Вещества, формулы которых HCl и AlCl₃, являются соответственно
- 1) кислотой и основанием, 2) амфотерным оксидом и кислотой,
- 3) кислотой и солью, 4) кислотой и амфотерным гидроксидом
- **А5** С наибольшей скоростью при комнатной температуре происходит соляной кислоты и 1) свинца 2) цинка 3) магния 4)железа
- **А6** В системе $SO_{2(\Gamma a3)} + Cl_{2(\Gamma a3)} \leftrightarrow SO_{2}Cl_{2(\Gamma a3)} + Q$ химическое равновесие смещается вправо при 1) увеличении температуры 2) уменьшения давления
 - 3) увеличения концентрации хлора 4) уменьшения концентрации SO₂

А7 Вычислите массу воды, которую надо выпарить из 1 кг 3%-ного раствора сульфата меди для получения 5% -ного раствора 1) 300 г 2) 600 г 3) 400 г 4) 500 г

А8 В ходе реакции $C + O_2 = CO_2 + 402$ кДж выделилось 1206 кДж тепла. Масса угля, сгоревшего при этом равна: 1) 72 г 2) 36 г 3) 7,2 г 4) 108 г

Часть 2 (при выполнении заданий к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Запишите выбранные цифры. Цифры

в ответе могут повторяться.)

А6 Химическое равновесие в системе CaCO $_{3(TB.)} \leftrightarrow CaO_{(TB.)} + CO_{2(\Gamma a3)}$ - Q смещается вправо в результате 1) увеличения концентрации СО₂ 2) повышения температуры 3) повышения давления 4) применения катализатора А7 К 1150 г 10%-ного раствора сульфата натрия добавили 115 г воды. Масса воды в полученном растворе равна 1) 950 г 2) 1000 г 3) 1150 г 4) 1115 г **А8** В результате реакции, термохимическое уравнение которой $2Cl_2O_7 = 2Cl_2 + 7O_2 +$ 574кДж выделилось 114,8 кДж теплоты. Объём получившегося при этом кислорода (при н.у.) составил: 1) 200 л 2) 4,48 л 3) 31,36 л 4) 8,96 л Часть 2 (при выполнении заданий к каждому элементу первого столбца подберите соответствующий элемент из второго столбиа. Запишите выбранные иифры. Цифры в ответе могут повторяться.) В1 Установить соответствие между молекулярной формулой вещества и классом органических соединений, к которому оно относится Общая формула Формула углеводорода A)CH3-CH2-CH2-CH(CH3)2 1) C_nH_{2n+2} **Б)** CH₃–С≡С–СH₂–СH₃ 2) C_nH_{2n-2} B) C₆H₅-CH₃ 3) C_nH_{2n-6} Γ) CH₂=CH-C(CH₃)₂ = CH₂ 4) C_nH_{2n} 5) C_nH_{2n-4} В2 Установите соответствие между исходными веществами и продуктами их взаимодействия РЕАГИРУЮЩИЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ A) $Fe_2O_3 + SO_3$ 1) Fe SO₄ 2) $Fe(NO_3)_3 + H_2O$ Б) $Fe_2O_3 + H_2SO_4$ B) $Fe_2O_3 + HNO_3$ 3) $Fe_2(SO_4)_3$ Γ) Fe₂O₃ + N₂O₅ 4) $Fe_2(SO_4)_3 + H_2O$ 5) $Fe(NO_3)_2 + H_2O$ 6) Fe(NO₃)₃ ВЗ Установите соответствие между названием соли и её отношением к гидролизу НАЗВАНИЕ СОЛИ ОТНОШЕНИЕ К ГИДРОЛИЗУ А) хлорид кальция 1) гидролизуется по катиону Б) сульфит калия 2) гидролизуется по аниону В) хлорид хрома (III) 3) гидролизуется по катиону и аниону Г) нитрат бария 4) не гидролизуется В4 Установите соответствие между формулой соли и продуктом, образующимся на инертном аноде при электролизе её водного раствора ФОРМУЛА СОЛИ ПРОДУКТ НА АНОДЕ A) $Zn(NO_3)_2$ 1) cepa Б) LiF 2) фтор B) FeCl₂ 3) хлор 4) кислород Γ) CuSO₄ 5) оксид азота (IV)

Часть 3 (дайте развернутый ответ)

C1 Осуществите превращения. Al \rightarrow Al₂O₃ \rightarrow AlCl₃ \rightarrow Al(OH)₃ \rightarrow K[Al(OH)₄] \rightarrow Al₂(SO₄)₃

C2 Уравняйте методом электронного баланса: $PH_3 + O_2 \rightarrow P_2O_5 + H_2O$.